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Two-link periodic trajectories of a plane convex billiard, when a point mass moves along a segment which is orthogonal to the 
boundary of the billiard at its end points, are considered. It is established that, if the caustic of the boundary lies within the billiard, 
then, in a typical situation, there is an even number of two-link trajectories and half of them are hyperbolic (and, consequently, 
unstable) and the other half are of elliptic type. An example is given of a billiard for which the caustic intersects the boundary 
and all of the two-link trajectories are hyperbolic. The analysis of the stability is based on an analysis of the extremum of a function 
of the length of a segment of a convex billiard which is orthogonal to the boundary at one of its ends. 0 2001 Elsevier Science 
Ltd. All rights reserved. 

1. STABILITY CONDITIONS 

Suppose there is a smooth regular closed curve r -which is the boundary of a plane billiard. We shall 
assume that its curvature is positive at all points. Suppose there is a segment of length I which intersects 
r orthogonally at the end points y1 and ~2. Then, this segment is a two-link periodic trajectory of the 
convex billiard. We recall that, according to Birkhoff [l], a dynamical system within r with elastic 
collisions is called a billiard. Suppose Ri and R2 are the radii of curvature of r at the points yl, y2; to 
be specific, we shall assume that R, s R2. 

It has been established in [2] that a two-link periodic trajectory will be elliptic (its complex multipliers 
Xi, A2 lie on the unit circle) if 

OclcR, or R2cIcRI +R2 

As a rule, elliptic trajectories are stable in the Lyapunov sense [3]. If, however 

(1.1) 

R,clcR2 or R,+Rzcl 
(1.2) 

the trajectory will be hyperbolic (Xi, A2 are real and 1 Al I> 1, and A2 I< 1). Hyperbolic trajectories are, 
of course, unstable. 

When 1= RI + R2, we have the degenerate case: A, = A2 = 1. If I= R, or I = R2, then A, = A2 = -1. 
An alternative derivation of the stability conditions (1.1) and (1.2) can be found in [4]. 

Example. Suppose the boundary r is an ellipse with semi-axes a 3 b > 0. If a = b, then we have a whole family 
of degenerate two-link trajectories. We shall fix a and decrease b. Then, the major axis of the ellipse becomes a 
hyperbolic trajectory and the minor axis becomes an elliptic trajectory. It is true that the property of ellipticity is 
lost when a2 = 2b2: A, = A2 = -1. When b is reduced further, the minor axis again becomes elliptic trajectory. 
Using the pattern of the trajectories of an elliptic billiard [l], it is also possible to show that, when a2 = 2b2, the 
minor axis becomes stable in the Lyapunov sense. 

Among the segments with ends in r, there is a segment of maximum length. It will obviously be a 
two-link periodic trajectory. In the neighbourhood of the end points, the boundary r is described by 
the equations 

y, = up: + 4x: h y* = I-a*x; +0(x,2) 

The radii of curvature are respectively equal to RI = 1/(2ur) and R2 = l/(2+). A two-link trajectory 
corresponds to the valuesxl = x2 = 0. The square of the distance between the points with coordinates 
(GYI) and (GYZ) is equal to 
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The dots denote terms of order 2 3. 
Since the two-link trajectory has maximum length, the quadratic form (-fi) is non-negative. In 

particular. 

la 
1 

-+$=R,+R2 
201 2 

(1.3) 

Hence, it follows, in particular, that the caustic curve of the boundary r (the curve of the centres of 
curvature) cannot lie wholly within r. 

Ekumple. Suppose r is an ellipse with semi-axes a 3 b. If a* < 2b2, then the caustic curve (which is an asteroid) 
lies within the ellipse. When a * - 2b2 it rests at the ends of the minor axis, and, when a2 > 2b*, the caustic curve - 
lies outside the limits of the ellipse (I&. 1). 

If the critical point x1 = x2 = 0 of th e f unction d is non-degenerate (the formf2 is non-degenerate), 
inequality (1.3) becomes a strict inequality. Hence, in the typical case, the segment of maximum length 
is a hyperbolic trajectory with positive multipliers. This result was mentioned in [5] as a consequence 
of a more general construction. 

2. EXTREMA AND STABILITY 

Suppose y is a point on the boundary r and that Z(y) is a segment with its ends on r, orthogonal to 
r at the point y (Fig. 2). We denote the length of the segment Z(y) by L(y). By virtue of the convexity 
of the curve r, the function L: r + Iw is smooth. Suppose y’ E r is the other end of the segment 

Z(Y). 

Assertion 1. Suppose y is a stationary point of the function L and the value of L(y) is not equal to 
the radius of curvature of the curve r at the point y (y’ does not belong to the caustic of r). Then, the 
segment Z(y) is a two-link periodic trajectory. 

Proof. The equations of the curve r in the neighbourhood of the points y and y’ have the form 

y=a,_G+o(x2), y=I+w+o(x) 

In this notation, 

By assumption, x = 0 is the critical point of the function L. Consequently, ~(1 + f/R,) = 0, where R, 
is the radius of curvature of the curve r at the point y. Since, 1 = L(y) # RI, p. = 0. This means that 
the segment Z(y) is orthogonal to r at the point y, which it was required to prove. 

Suppose Z(y) is a two-link trajectory. Then, the function L takes stationary values at the points y and 
y’. Suppose the curve r is given by the equations 

I(Y) CD I- 

. 

Y 

Fig. 1 Fig. 2 
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y=a,X*+O(X*), y=Z-a*x*+o(X*) 

in the neighbourhood of these points, respectively. The expansion of the function L2 in a Taylor series 
in the neighbourhood of the point y has the form 

L* = 12 + (24r,Z - 1)[2a,/ - 2u*Z(2a,Z - l)]x2 + 0(x2> (2.1) 

If the stationary pointx = 0 is non-degenerate, then 2aiZ - 1 # 0 and, consequently, y’ does not belong 
to the caustic of the boundary r (compare with Assertion 1). 

Assertion 2. Suppose y and y’ are non-degenerate stationary points of the function L. Then, 
1. if y and y’ are points of a local minimum of L, the trajectory Z(y) = I(-$) is elliptic; 
2. if y and y’ are points of a local maximum and minimum of L, the trajectory Z(y) is hyperbolic 

with negative multipliers; 
3. if y and y’ are points of a local maximum of L and if the caustic of the boundary r does not intersect 

r, the trajectory Z(y) is hyperbolic with positive multipliers. 
This result uniquely relates the extremal properties of the length of a two-link trajectory to its stability. 

Proof. 
1. Suppose y is the point of a local minimum of the function L. Then, by (2.1) we have the inequality 

(2u,Z - 1)[2u,Z - 2u*Z(2u,Z - I)] > 0 (2.2) 

Taking into account the fact that al, a2 are positive, we obtain 

1> 1/(2u,) and I< 1/(2ui) + 1/(2u2) 

Since the function L also has a minimum at the point y’, the inequalities 

(2.3) 

I > 1/(2u2) and I< l/(20,) + 1/(2u2) (2.4) 

are derived in a similar manner. Since RI = 1/(2u1), R2 = 1/(2u2) and R, s R2, from (2.3) and (2.4) we 
obtain the second inequality of (1.1). Consequently, the trajectory Z is elliptic. 

2. Suppose y is the point of a local maximum of the function L. We then have an inequality opposite 
to (2.2). The intervals 

I< 1/(2u,) or I > 1/(2ui) + 1/(2u2) (2.5) 

are the solution of this inequality. On the other hand, the function L reaches a minimum at the point 
y’. Consequently, inequalities (2.4) hold. Inequalities (2.4) and (2.5) give the first inequality of (1.2). 
Therefore, Z is a hyperbolic trajectory with negative multipliers. 

3. If y and y’ are local maxima of the function L, the inequalities 

I < l/(20*) or I > 1/(2ui 1 + 1/(2u2) (2.6) 

have to be added to the inequalities (2.5). 
It follows from this that either 0 < I -z RI or 1 > RI + R2. Since the caustic of the boundary r lies 

within r, then I > RI and the single inequality 1 > RI + R2 therefore remains, which guarantees the 
property that Z is hyperbolic with positive multipliers. 

In a typical situation, all the critical points of the function L:T + [w are non-degenerate. The overall 
number of such points is then even and the maximum and minimum points alternate with one another. 

Example. We will now again consider an elliptic billiard with semi-axes a 2 b. We fix the value of a and decrease 
b, starting with the value b = a. While a2 < 2b2, the function L will have four critical points at the vertices of the 
ellipse (at the ends of its axes) and, moreover, the ends of the major axis are the maxima of the function L, and 
the ends of the minor axis are the minima. When a2 = 2b2, the last two critical points are degenerate and, when 
b is reduced further, they will pass into local maxima. Since, when a2 > 2b2, the caustic intersects the ellipse at 
four points (Fig. l), four non-degenerate local maxima of the function L appear between the vertices. The law of 
change of the extremum type still holds, but two-link periodic trajectories do not correspond to these new stationary 
points (see Assertion 1). This example also shows that, in conclusion 3 of Assertion 2 the condition that the caustic 
of the boundary r must not intersect r cannot be omitted. 
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3. THE EXISTENCE OF A STABLE TRAJECTORY 

The main result is as follows. 

Assertion 3. We shall assume that the caustic of the convex oval I does not intersect I and that the 
function L: r + R only has non-degenerate stationary points. Then, the billiard within I’ has an even 
number m 2 2 of two-link periodic trajectories and, moreover, half of them are hyperbolic and a half 
of them are of elliptic type. If the ends of these trajectories are numbered in sequence with the numbers 
1,2, . . . , 2rn, the ends of the ith trajectory (1 G i c m) are the points with numbers i and m + i, and 
hyperbolic (elliptic) trajectories correspond to even values of i and elliptic (hyperbolic) trajectories 
correspond to odd values of i, respectively. 

The proof makes use of Assertion 2 and some simple topological facts. We will first show that, if the 
curvature x of the closed oval I is positive everywhere, then any two segments of two-link trajectories 
necessarily intersect. Sincex > 0, then (according to Frenet’s formulae), during the motion of the point 
y along I in a positive (negative) direction, the tangent to I at the point y rotates in the same direction, 
Suppose y and y’ are the ends of a two-link trajectory I; the tangents of I at these points are obviously 
parallel. Hence, if the two points y1 and y’, E I lie on one side of 1, the tangents at these points 
necessarily intersect and, consequently, they cannot be the ends of a two-link trajectory. 

We now consider the trajectory I1 of maximum length. Since the caustic of I lies within I, 
2aJ - 1 > 0 in formula (2.1). Consequently, the ends of Ii are non-degenerate local maxima of the 
function of length L. By assumption, all the critical points of the function L are non-degenerate. This 
means that other critical points of L necessarily exist and, by Assertion 1, the additional two-link 
trajectories I,,. . ., I,,,. All of them intersect Ii and therefore, on each side of I1 in I’, there are m - 1 
different critical points of the function L. By virtue of the alternation of the maxima and minima, their 
number must be odd. Consequently, m, the number of different two-link trajectories, is even. 

In the oval I, we label the ends of the segments Ii, I,, . . . ,I, in sequence with the numbers 1,2,. . . , 
2m. Since these segments intersect in a pairwise manner, the pairs of points with the numbers i and m 
+ i (1 G i s m) turn out to be the ends of these segments. The ends of the longest segment Ii are 
maxima of the function L. On taking account of the alternation of the type of extremum of the function 
L, we obtain that the ends of each of the segments 4 are either the two maxima or the two minima of 
L. By Assertion 2, the trajectory is hyperbolic in the first case and elliptic in the second, which it was 
required to show. 

4. CONVEX BILLIARDS WITHOUT STABLE 
TWO-LINK TRAJECTORIES 

We will now present an example of a convex curve I with a caustic which does not wholly lie within I 
and for which all of the two-link trajectories are hyperbolic. For this purpose, we take an equilateral 
triangle and consider three circles Si, Sz, S3 with their centres at the vertices of the triangle and with 
radii which (to be specific) are equal to one-third of the length of a side. Suppose I is the boundary of 
a convex shell drawn on the set S, U S2 U S3 (Fig. 3). This curve consists of arcs of circles and straight 
line segments. The billiard within I has exactly six two-link trajectories: three segments of maximum 
length and a further three segments on the ends of which the function of length L takes maximum and 
minimum values. All of these trajectories are hyperbolic. It is true that, in the case of the curve I, the 
curvature is not positive everywhere. However, this curve can be transformed into a strictly convex (even 

Fig. 3 
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analytic) oval, by means of a deformation which may be as small as desired, which again will have exactly 
six hyperbolic two-link trajectories. 
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